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ABSTRACT

NG -
A , Co . .
Y.;:j, ;,? An experimental flow visualization study was done on an oscillating generic ship
s A gt . . . .
40 model in the Low Speed Wind Tunnel Facility at the Naval Postgraduate School in
A Monterey, California. The purpose was to visually analyze the flowfield around the
o model while simulating ship motion in rough seas, with a correspondingly modelled
LA .
::‘;}' open-ocean atmospheric boundary layer,
o The two flow visualization techniques utilized were neutral density helium
X bubbles and a liquid aerosol, each technique providing varying degrees of on-body and
, off-body analysis. Limited success was achieved with the aerosol, but the helium
i:;'ei ;;Z bubbles produced excellent photographic results and an accurate visualization of the
e oscillating model's flow field was achieved, (/%) e s
a";'&:' »
n't,tpf_' ‘
Qg‘on:ﬂ
R . Jocesalon For
e NTIS GRA&I
ur DTIC TaB
e Unannounced |
e Justifioatdonemm ]
.
KR By
Lty Distribution/
Sty , Availability Codes
) Avall and/or
W Dinat Special
&b
'“o":l‘
c'::o'|
'ty -
P Al
N

. MU : L YO : Al AR ¥ OO U 00 9o 0 e He BT W R e gt Tra R 5, T
B L i o S D i e A A A A e i A M NN O DO R YU NI ISRV

e AP wih B B Al st abh mih NS AE o ali mih mlh wie WD aln 288 nbe 20 0l it atB alh mta mba mie 2l eln b wil wis v B S e e e B w

LAy Ay Ry N

Bl elbad e e B e s b b~ ke




% TABLE OF CONTENTS

I INTRODUCTION © vt veeeeeeiiiinenneeenns R ;
I ATMOSPHERIC BOUNDARY LAYER SIMULATION ... ...vvui... 1
A.  THEORETICAL CONSIDERATIONS ........civvinvennnn, b

Bl EXPERIN[E.\‘TAL SIN‘ULATiON O] ICIOQOIIVD'IOOIDOOQ‘OOQ 12 ;

L SHIP MOTION (5. 0uuseeissvaisinervnessionsinsieeivnoenes 18
A.  THEORETICAL CONSIDERATIONS .....vvvvviiiininn, 1S

~B. EXPERIMENTAL SIMULATION ...vvvvvivviiiininnn 16

IV.  EXPERIMENTAL APPARATUS .................. 19
'\4 \VI\D TL\\EL FACIL[T]ES R Y 19 ;

. B. VERIFICATIO\OFRESLLTS l.ll‘il;.tlollll00‘00000.ll 19 f‘

Co OSCILLATI\G“BCHA\[SW........f..q..'..:..,..........2'1

Dl THESHIPWODELOIOOOOlOUDOCQ‘Il'l.lllﬁ..it...il‘l‘i‘ld24-. M ‘f‘

V. EXPERIMENTAL METHODS 1..10viieieiiessereieesieseinnion s 27 E

A, FLOW VISUALIZATION TECHNIQUES .......ocvvvvvini0n 0 27 "1

1. On-body Flow Techniques ....... e &7 i
2, Off-body Flow Techniques ...............00 v L 28
B. PHOTOGRAPHIC TECHNIQUES AND LIGHTING .......... 3t
;:’f 1. Oscillating Model with Aerosol ... .. Ve Ve 31
E; 2, Static/Oscillating Model with Helium Bubbles............... 32
: VI RESULTS covvvvvenieriinniniennein, SURTTTRN e M
‘ A.  AEROSOL INJECTION .. vvvvvviniivnnn, e e 3d
B. HELIUM BUBBLE STREAKS ..........ciovviiviinnn, voened 38
1. Zero Degrees Yaw ....oovviviviiiuns, e Voo 36

- 2. Twenty Degrees Right Yaw.....ooviviiiv i 39 _

X 3, Twenty Degrees Left Yaw .......covviviiiiiiiiinnan, ven 0 '
: 4. Thirty-five Degrees Left Yaw .0 ovvviieiniieiieniarinnn, 41




VI, CONCLUSIONS AND RECOMMENDATIONS ... <48
LIST OF REFERENCES .............. I Y 50

INITIAL DISTRIBUTION LIST




1
2
3

LIST OF TABLES

FREQUENCIES OF MOTION ......ovivivviiiniiiiiniinninnn 17
TEST SECTION VELOCITY DATA (FT:SEC) (FROM REF.9) .......0.v0 22

TEST SECTION % TURBULENCE INTENSITY DATA (FROM
REF‘9)'ll.’l."‘...'040‘ll'l"|0'0'I00.l..00'001||.’lQQIDDOIQID1023

P
Tk A 9.8 MG a.tw.




\
i LIST OF FIGURES
W
52 4.1 NPS Flow Visualization Tunnel .......... Ceenas e 20
g - 4.2 Scotch Yoke Mechanism............vverieenss S P 25
! . 5.1 Example of Fluorescent Minitufts, Static Model. ...\ cvvuvveirieriii., 28
/. 5.2 Schematic of Bubble Gencrating System ......... T ')
. 6.1  Sample Results with Aerosol ..... 35
R 6.2 Zero Degrees for Roll and Pitch at Zero Degrees Yaw . o.ovvvviviniin. . 36
6.3  Left Roll at Zero Degrees Yaw.,......... T ¥ |
. 64  Nose Up Pitch at Zero Degrees Yaw o\ vvvvvvrevineiirirerentonenrnee 37
v 6.5  Nose Down Pitch at Zero Degrees Yaw ....vvviviviiiiiiiiiiioiiin,, 38
N 6.6  Oscillating Model at Zero Degrees Yaw ... vvveveeivervonerioresnesss 39
. 6.7  Zero Roll and Pitch at 20-Degrees Right Yaw ............... PR [
(;w 6.8 Left Roll at 20-Degrees Right Yaw ., .. oo vvviiinivciiiiiiiiiiiiii 40
N ' 6.9  Nose Up Pitch at 20-Degrees Right Yaw ..o vvvii i dl ,
‘:!:‘ _ 6.10  Nose Down Pitch at 20-Degrees Right Yaw ....ovvvvvivvinieriiierin,, 4l , ]
611 Roll and Pitch Oscillations at 20-Degrees Right YaW . ..o vvvvvvierersir, 42 )
';; 6,12  Zero Roll and Pitch at 20-Degrees Left Yaw .....ovvvvivvnn, - X |
e,‘: ) 6.13  Left Roll at 20-Degrees Left Yaw .......... i, .43
i 6,14  Nose Up Pitch at 20-Degrees Left Yaw ... vviviiriiviniviriienrie ., 44
" 6.15  Nose Down Pitch at 20-Degrees Left Yaw .......c0vvvvvinnn. A 44
K 6.16  Oscillating Model at 20-Degrees Left Yaw ........oviiiveiiiinenn 45
i 6.17  Zero Pitch and Roll at 35-Degrees Left YaW ... ....ovvoveeunieinnn as
_;: 6.18  Right Roll at 35-Degrees Left Yaw .............. e e 46
: 6.19  Nose Down Pitch at 35-Degrees Left Yaw ......... P 46
. 6.20  Nose Up Pitch at 35.Degrees Left Yaw ............ Vinees T 47
6.21  Oscillating Model at 35-Degrees Left Yaw .......oovivviiviviiininnnn, 47
¢ 7
4
N
;

DA

i ' X l \ | ‘~ y d ‘|.I .
o s i emioalelvea pidgfi s e on

LR BACN .
o oBama e e paalere ‘q-n l-oo‘.qu b--n-h nq.nv-lclolultjl.ﬂ-v‘p

IR O AL A M R LN L AL TS
J’ "“' "‘Q"“‘..':‘i‘f_‘l:"_"ﬁhf'?' avbatereali vy sleniaeiesie s e imn



ACKNOWLEDGEMENTS

A special thanks is given to LCDR's Bill Daley, Jay Hixon, Gary Selman, and
especially Tom Cahill for their contributions to my phase of this thesis project, as well
as to LCDR Will Bolinger for laying the groundwork. Appreciation is extended to the
personnel at the NPS Photo Lab, particularly Mr, Andy Sarakon and Ms, Dale Ward
for their quick turn-around times and personal interest in this study. Extreme gratitude
is extended to Prof. J. Val Healey, for his unlimited support, knowledge, and countless
personal hours invested in guiding me by the hand during these last nine months.

‘ . Most of all, I thank my loving wife, Elizabeth, for her continued support,
oi?- understanding, and motivation towards the successful completion of this project.

UM AN R AR AR ACABC S AN LA LA YOC T A
. ree Gt Bbe aBetabe-abetatal abe S8miatn-Sia dde AiniRle due @%e ATw Al A% tle #0a 'Sy dicihth 4l B' Glebln S0 b ¢ aoe 08 v S0




I. INTRODUCTION

Helicopter flight operations aboard L. S. Navy combatants and auxiliary ships
have become an important aspect of present fleet readiness, These operations can
become quite hazardous, particularly in the takeoff and landing phases when combined
with excessive ship motion and superstructure airwake turbulence. The Naval Air Test
Center (NATC) presently determines the safe operating envelopes for various ship-
helicopter combinations, and according to Carico, McCallum, and Higman [Ref. 1|
there is a backlog involving eleven different helicéptefs and twenty classes of ships. At
this titne, disregarding the inevitable development of new ships and helicopters, it is
5 estimated that all the safe operating envelope combinations cannot be determined
o within the remainder of this century. Thus, it is highly desireable to develop a
My simulation technique accurately establishing these safe envelopes, which would save
time, costs (now at $75,000 to $150,000 per combination), and require no operational

eyl _assets, ) .
'r_:fo: This report is concerned with the analysis of the ship airwake turbulence of an
’E"i : oscillating model by flow visualization with respect to the above problem, Two flow
‘ visualization techniques were attempted to accomplish this: neutral density helium
. bubbles and an aerosol spray, each of which provided various levels of insight towards
u the flowtield. Each method also required different photographic and lighting
: procedures to achieve optimum results. Experimentation was conducted in the Naval
Postgraduate School’s low speed wind tunnel modified to simulate an open-ocean
‘i: atmospheric boundary layer velocity profile and associated low altitude turbulence
Iy levels. An oscillating mechanism was designed and modified by Prof. J. V. Healey, and
o was used to approximate ship motion in relatively rough seas. The ship model used
f; was a generic destroyer constructed of 8 medium-density polystyrene foam body with
j an aluminum bow, scaled approximately at 170:1 to a Spruance-class destroyer. Both
3 on-body and off-body flows were investigated by the flow visualization techniques
: listed above, Flows were investigated initially in the single degree-of-freedom modes of

roll and pitch, then were analyzed in coinbinations of the above to possibly determine
any non-linear coupled afTects,
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:éfif- This report deals with a portion of an ongoing investigation, Preceding research
';:gé: included verification of the atmospheric boundary layer modelled in the wind tunnel as
bt well as evaluation of a similar generic model in static conditions only, using various
i flow visualization techniques. It is intended that further study will analyze the flows
! : about specific ship types, using highly detailed models (some of these include the
‘Spruance-class destroyer, Enterprise-class carrier, and New Jersey-class battleship).

The final phase of research anticipates the inclusion of specific helicopter simulators to
study the interactions of the two bodies in the dynamic open-air ocean environment.

Photographic results are included and discussed in the final chapter, as well as
recommendations for the follow-on phases of the project.

) 10
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e II. ATMOSPHERIC BOUNDARY LAYER SIMULATION
W A. THEORETICAL CONSIDERATIONS

o Numerous studies have indicated that the turbulent boundary layer simulation
) based solely on the mean velocity profile is insufficient, According to Healey
[Ref. 2 p. 46), there are four important parameters which must be considered:

1. The mean longitudinal Wmdspeed U, which is the instantaneous Mndspeed
averaged over a specific length of time.

5 2, The standard deviation, @, of the windspeed. fluctuations about the tean which.
yields the "turbulence intensity” when divided by the mean windspeed,

3. The longitudinal scale length of the turbulence, L, a measure of the mean length
of the most energetic eddies in the turbulence.

q d, The spectrum function of the turbulence, an indication of the t‘requency
’ distributions of the turbulence energy.

These four parameters have been embpirically shown to be functions of the mean

v, windspeed, the elevation in the boundary layer, and the roughness length scale, the
j_}:‘ ‘ latter being a surface irregularity coefficient not directly related to ground obstacle
i?g . height. The roughness scale is designated as 2y measured in meters, and ranges from

N 105 meters for a glassy surface to 3-4 meters i‘or very rough-textured terrains, A more
- - detailed listing for various types of terrain is available in [Ref. 3
o Garratt [Ref. 4] approximates the roughness length 2 as

. 10 exp {-0.41:(0.75 + 0,067 x U(10))!/2 x 10E-3) (eqn 2.1)
9
_;f_-'; where 41 is the Von Karman constant, the square root value represents the neutral
E drag coefficient, and U(10) designates the mean windspeed at a 10 mete. altitude.
f Keep in mind that this is a general approximation, since several parameters may be lost
' due to experimental scatter, The 10 meter elevation figure is used in the equation
because this is a standard reference height often used by meteorologists, and it also
: coincides with the mean height for the helicopter landing decks of modern frigates and
i destroyers,
}; Recent experimentation has revealed that the turbulence intensity has some
ié:‘ dependence on the mean windspeed, but the effect is small enough that it will be
:
{
B 1
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neglected here. More importantly, it is the fluctuations in the longitudinal velocity
component that determine the turbulence. The two major physical parameters
influencing these velocity fluctuations are the altitude and roughness length scale. As
discussed above, the altitude will be considered constant at 10 meters and a mean
windspeed of 25 m; sec (about 50 kts) is indicative of “normal” operating conditions in
heavier seas.

Using the niean windspeed value of 25 m/sec in equation 2.1, z, is found to be
0024 meters. Comparing to other sources [Refs. 3,5], the turbulence intensity is
calculated to be 0.14. The term “rough seas” here is used in the same context as that
defined by Kent [Ref. 6: p. 22), with a mean wave height of 14 feet. For this condition
(sea state 5), the roughness length will be considered to range from .001 to .01 and the
corresponding turbulence intensity range to be 0.13 to 0.17. Recall from earlier, the
turbulence intensity is the standard deviation of the fluctuations divided by the mean
wind speed. | \

More important than the longitudinal turbulence length scale parameter is the
ratio of this length scale to the ship’s beam. As this ratio increases, the actual flowfield
about the ship appears to be less random and riore time-dependent. |

Several spectrum function models are currently available to describe the
atmospheric turbulence, such as those by Kaimal, Dryden, and Von Karman. The Von
Karman function is more popular and is given by

S(n) = (4L6) ; U{1+70.8(n’)2}5'6 (eqn 2.2)

where S(n) is the value of the Von Karman spectrum function, n’ is defined as Ln/U, L
is the turbulence length scale, U is the longitudinal mean velocity, and n is the
turbulence frequency.

B. EXPERIMENTAL SIMULATION

Numerous approaches have been developed in atmospheric boundary-layer
simulation (or ABL), but few take into account all four of the parameters listed
previously. The best source of information available in this area has been found to be
the Journal of Wind Engineering and Industrial Aerodynamics. One major difficulty in
simulating an accurate over-ocean ABL is in the comparison with experimentally
recorded data, since the ABL is different for changes in wind velocity, sea state, and
meteorological conditions.




:, Also, the source of data being compared must be examined. NATC data is

:5:: generally obtained using ship anemometers as the primary source of windspeed

;:‘,‘.! measurement. These devices measure only the relative windspeed (between the actual

, windspeed and the ship’s speed), and as stated earlier, the atmospheric boundary laver

::E: ‘ changes only with respect to the true windspeed. Of less importance, but a justifiable

f:g: consideration of error source, is that NATC tests have shown anemometer positioning

Zfi i in ship superstructures is susceptible'to airwake interference and therefore the reliability

" of the instruments themselves is questionable. “They are normally calibrated to avoid

o this, but meteorologists would not use them in a data collection study.

“ In dealing with ship motion relative to the ABL, scaling factors must be utilized
g v to truly model the combined airwake in the wind tunnel. It is here the Strouhal

number is introduced. “This is a dimensionless QUaxitity defined by the frequency of :

::Z‘ ' motion. oscillation, n, multiplied by the characteristic lgngt-h, L, {in this case, the ship's :
%,;: beam is used) divided by the speed, U, as given in the following equa;ion:

" “Strouhal Number = nxLvU % (eqn2.3) -

;ﬁ, ‘While n, L, and U may vary from the actual system to the wind tunnel model, their . ]
1{“: . ~ ratios, defined by Strouhal numbers, must be equal t’qr accurate modelling. Typically, 1
'} as was the case in this situation, the model characteristic lehgth is fixed by the size of ;
‘;f ) the test section, and U may often be 1imitéd by the minimum Reynolds number needed

e A and by the power capabilities of the motor driving the fan. This leaves the model

§§} A oscillation frequency as the primary variable and thus is easily determined. The

" calculations used for the Strouhal Numbers are tabulated in the following chapter in

iz;' : Table 1.

::: In view of the above, the riost successful technique encountered in developing a

'3.‘" reliable ABL wind tunnel model was presented by Counihan [Ref. 7). He utilized
'?5. vortex generators well forward of the test section to create the appropriate mean

;": windspeed profile. Following the vortex generators were roughness elements, mounted

{.E? low to the wind tunnel floor, to provide the necessary low-level turbulence, The mean
| speed profile, as described by Arya [Ref. 8}, is the well known logarithmic relationship

I L.U = (1/K)In(Z:z) (eqn 2.4)
_::::

i

"
L 4
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where U’ is the frictional velocity, K is Von Karman’s coastant (previcusly used in 2.1
as 0.41), z is the elevation and 2, is the roughness parameter (.001 to .01, as previously
determined). This expression may be refined into an exponential form as

'L = (Z! 28)1"9 (eqn 2.5)

where now the roughness parameter becomes the gradient height, Z , in this form, For

the selected’ mean_speed of 25 m;sec at lO meters elevauon for thxs experiment, the
mean velocity profile in 2.5 becomes '

Umasx(z/i)h® - . (eqn26).

Through the correct combination and placement of the vortex generators and the

roughness elements, the above velocity profile with. vetified turbulsnce i‘méﬁsities

(representing the atmospheric shear, stresses) was obtained in the \’aval Postgraduate
~School's low-speed wind tunnel[Ref 9 PP 2.28), -
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1. SHIP MOTION

A, THEORETICAL CONSIDERATIONS
Actual ship motion is a complex, non-linear system with six degrees of freedom

- {or DOF). The system may be approx:mated by the sixth-order cquuuon of the

following mass-damper system:

M Y'(t) + DY) + K \-'(:,) - F(lt,). - . (eqn 3.1,) -
where M, D, and K are snx-b)-snx matrices and F and Y are slx-dxmensxonal vectors of
(%129 O,v). It is noted that F(t) may be random or. smusoxdal forcing functions in
the form of forces or moments. (X, v,z) represent the three translational modes of }
surge, sway, and heave (respectively), whxle (9,8,y) describe the roll, _piteh, and vaw-

rotational modes. The systerm-is made more-complex in- that coupling between modes .
oceurs; normally roll, swa\ and. yaw are coupled together as.are-heave; pltch and Surge,

Finally, shxp mteractlon thh the . immediately surrounding water and wave action )
affects the mass (M), damping (D), and restoring ( K) matrices so that the final s;stem

- requires very large.seale computatxon and numerical appro:umatnon mcthods. , Perhaps L

the most difficult calculation is referred to. as. the “encouriter frequency.” This.is a
function. of the ship’s natural motion frequencies (one in each DOF) and the
frequencies of the ocean waves, each having their own spectrum functions; it also has
a strong dependence on the angle between the ship’s heading and the dominant wave
direction,

Two distinct methods currently prevail in ship motion prediction programs, The
more classical time-domain approach calculates (or approximates) the coeflicient
matrices, and often utilizes coordinate transformations to decouple certain modes for
more simple analyses. These are often required to use small-angle approximation
theory and thus the accuracy falls off as higher amplitudes of motion are encountered.
The frequency analysis method correlates the energies of the encounter wave to the
ship's response, the resultant scaling factor referred to as the Response Amplitude
Operator, or RAO. Determination of these operators is relatively simple, but a huge
number is required since the RAO changes with ship’s heading and speed, sea
condition, wave frequency, and each DOF.,

15
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Healey [Ref. 2: p. 52] lists three ship-motion programs in use, the one from David
Taylor Naval Ship Research and Developement Center (DTNSRDC) being the most
sophisticated. The following assumptions are applicable:

¢ Monohull ship form (entails all present U.S. Naval Ships)

e Strip theory (a common aerodynamic technique analyzing the ship’s transverse
sections in two dimensional flow)

¢ Linearized equations are valid (an update to the program accounts for non-
linear roll effects)

¢ . The RAO's are derivable from wave and shxp motion harmonics
¢ Heave, pitch, and surge are uncoupled from roll, sivay and vaw.

This is a relatively effective ship motion program, but adjustments must be made
as more information in ‘this fléld becomes avnilable, ‘particularly it the area of non-
linear angular motion, It is also Imperative that this, as with any simulation
techniques, be validated as soon'as time permits against the actual ships which are
being modelled. |

-1t is the intent of this phase of the pro;ect to establish an oscxllating mechanism

initially. Primary emphasis was on the individual analysis of the major modes of heave,

pitch, and roll and any interactions between those, This.is supported bv Kent
[Ref, 6: p. 41], in which he states each of the six motions are analyzed only orie at a

time, then the attempt is made to.trace the effects of each mode on all the others. Due
to fluid resistance forces, even for a ship in calm waters, any movement in any one
mode will cause a response in the ship in all five other modes. Simplifying assumptions
were made for each mode, such as the following for the pitching mode [Ref. 6: pp.
75.76):

(1) The swell consists of a regular series of waves, uniform in dimension and
sinusoidal in shape

(2) The "encounter angle” is zero degrees (or head-on) at constant speed
(3)  Pitching is isochronous

(4) Pitch damping from water resistance is neglected

(5) Ship wake and ocean wave interference is neglected

(6) Variations in virtual mass and efTects from ship’s rise or fall is ignored.
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The other primary objective at this stage is to optimize the flow visualization and
photographic techniques for this oscillating, bluff body-type low. With these goals in
mind, an extensive ship’s motion program as described previously is not required at
this time, since a more basic understanding of the aerodynamics involved is being
sought. This provides for a simple ships’ motion model indeed, but much more
research is required before accurate ship motion programs can be extensively applied to
wind tunnel testing. : _

~As discussed earlier on page 13, rotational speeds were determined by equating’
the Strouhal Numbers, shown by equation 2.3, for the ship and the generic model: ‘The.
simulated conditions nreviously listed are summarized here in Table 1, as well as the
parameters used in the wind tunnel. (Ship characteristic length and roll rates were

-obtained from pérsonal cotiversation with \h'. J. Higman of NATC).

TABLE1 -
. FREQUENCIES OF MOTION '
SHIP ~ MODEL

Lpeam 17 meters a 0.1 meter
-Velocity 25 m/sec 2.0 misec
Roll Rate 10-15 sec/cycle

equates to 0.067.0.1 Hz yields 0.9-14 Hz
Pitch Rate 7-10 sec/cycle

equates to 0.1-0.14 Hz yields 1.4.1.9 Hz

Bluff bodies, as referred to above, are defined as non-streamlined bodies
generating separated flow over a substantial proportion of their surface. These bodies
are often characterized by sharp leading-edged geometric shapes of wide angles. Until
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recently little concern has been shown in their relation to the surrounding flowfields.
This area of study is now referred to as "bluff body aerodynamics,” and the primary
interests lies in the fields of architecture and automotive engineering. The mode! used
during this testing may be considered similar to a long, low building, thus those
governing principles may be applied to the project. Unfortunately, for anything other
than a basic geometric shape like a cylinder or a rectangle, little has been accomplished
in this area with respect to detailed analytical testing. Bearman has done extensive
studv on an oscillating cylinder, but concedes that more work must be done.
[Ref. 10: pp. 195-219]. -

Two phenomena particularly intetesting with oscillating bluff bodies is the
generation of trailing vortices and flow detachmeént. It would be advantageodus in
certain situations, such as a helicopter landing on a ship, to have information like the
amplitudes of the trailing vortices, areas more prone to detaching flows and therefore
more turbulent flow, and how these areas and nthcir frequencies of occurrence are
affected by bluff body oscillati‘oqs. for some examples.
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1IV. EXPERIMENTAL APPARATUS

A.  WIND TUNNEL FACILITIES

The low.spced smoke tunnel located at the Naval Postgraduate School in
Monterey, California, was used for all experimentation, [t consists of a 15 square foot
intake section with a honeycomb’screen combination to prevent debris inﬁestion and
provide some directionality to the inbound flow and reducing the turbulence in the test
section, A square bell-type contraction cone leads to a § square foot, 22-foot long
closed test section, partially enclosed by plexiglass sheets in the walls and ceiling for
observation and photography, A constantsspeed, AC-motor is used to drive a variable
pitch $-foot diameter fan which is preceeded by protection louvres, located directly
behind the test section, The sixteen-blade fan is capable of producing spéeds from
virtually O to approximately 35-feet per second. The tunnel exit section is then routed
to the environment for exhaust, S

Se'veral médifications were réquired to Sbtain a'prope'r ABL simulation, The
scheme suggested by Counihan (et al) was implemented in the following manner;

vortex generators, to slow the lower-level flow and create the desired velocity profile,

were constructed and installed at the leading edge of the tunnel. Four were found to

be sufficient in producing the profile (as per verification measurements described in the -

following section), but spaces between each were wlcle enough to allow “tubes” of
unaffected flow, which required the addition of the three tapered delay cones. The
desired turbulence intensity was then obtained by using three-eighth inch dowels
ranging from 2 to 8 inches in height as the roughness elements. Equally spaced one
inch blocks were attempted earlier with poor results. The dowels were randomly placed
and the turbulence intensity was measured, then several iterations were required before
the desired intensity level, as described in Chapter 11, was achieved. (Fig. 4.1).

B. VERIFICATION OF RESULTS

Bolinger [Ref. 9: pp. 20-25] completely describes the verification procedures and
methods, which are summarized here. Measurements were obtained from two different
instruments to ensure accurate data was taken: first by an EDM.2500C
micromanometer and then by a Dantcc hotwire anermnmeter attached to a single wire
probe. One hundred forty-four data positions were measured in the test section area,

19

SR
e e




[Pt

veloelity

vortes genezators

lﬂi“l‘hﬂ. “ﬂltlﬁll

8108 VIE¥ !

K bt‘i{!! llnll,g;ltleréi

| ’ s

turbulence generaters

< ‘Lghting
- 0..' g E
=|'oontraetion eene || =2 , Y ship model :
- tapered % ]
- --gf‘-::. K
- — i
- .!‘0'
= b= vortan yenerators .:ggfm
I.\\-- Chvervation deck
protaesion
. sereen \_
v PLAN VIEW
i Figure 4.1 NPS Flow Visualization Tunnel.
g,
k) 20
o
i
13
*a0)
B

RS

e s 04 S A b dube




probe. One hundred forty-four data positions were measured in the test section area,
with sixteen horizontal and nine vertical coordinates. [t is noted here that this thesis
deals primarily with flow visualization techniques and its associated theory. A
concurrent report written by LCDR Gary Selman deals with the data acquisition
portion, thus any further details in this aspect may be obtained from that source,
Tables 2 and 3 from Reference 9 are included here for continuity.

C. OSCILLATING MECHANISM

It was decided to simulate only the highest-anplitude motions, as was discussed .

earlier, separntely and then to investigate any non- -linear coupling effects between

modes, Thus the mechanism was designed to sustain heave, pitch, and roll or
“combinations of hieave with roll and pitch with roll. The dévice incorporates two

“Scotch Yoke” mechanisms connected by two joined shafts, and two motors (one for

rolling motion, the second driving the yokes for pitch-and/or heave motions), which are

mounted to a frame and centered just below the test section,
A five-amp, 1:2-Hp, Minarik motor controlled the vertical motion, usmg a belt to
totate, two connected shnm. in turn drivina the two yokes mounted to either end of the

model, The Scotch yoke consists of a cylindrxcal nanze with an eccentric pin." S

ad]ustnble along the radius of the flange. The pin slides along the chnnnel of the yoke,
which.is driven vertically by the pin as the flange s rotated (see Fig 4.:2), The-yokes

~ were maintained in the true vertical by Teflon guides; The two -'-"isht\'m”dbnﬁéctlry’g,'_'the""
‘yokes were connected ut a coupling to facilitate transition from heave to the pitch
‘modes, They were easily disconnected at the coupling and could be rotated through

90-degree phase increments, where in.phase represented pure heave and 180-degrees
delineated the pure pitch. A pitch and heave combination mode was available at the
90- and 270-degree phase positions but was not analyzed fct this experiment,

The roll mode was driven by a 1/8-horsepower, l1.amp Bedine motor, again using
an eccentric cylindrical flange, but here it was connected directly to a control arm
which fed into a pin through the center of the model, Both the flange and the arm
length could be adjusted to provide desired roll angles, ranging from approximately 3-
to 20- degrees. The roll arm connectiun to the model was by a simple pin, which was
easily removed to shift to non-rolling modes.

As alluded to earlier, the model was to be analyzed in a flow with variety of yaw
angles, ranging from zero degrees (head-on to the bow) to 3§ degrees zither side of the
bow (a full range of motion through 360 degrees was available, but does not practically
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TABLE 2

TEST SECTION VELOCITY DATA (FT/SEC)
. (FROM REF. 9)

Z- Height above floor (inches)

LU L L LT T 1 )

J.00

AL DD L LD D DL DL YL L LT T T Y YL Y Y T IV T T Ty punygywassy

x* 2,00 4,00 8.00 12.00 16.00 19.00 25.90 39.00
OO0 6,21 6236 .63 .01 T.B4 B3 R4 a.81 Bl
9.00 6,32 633 604 .89 .70 000 040 0.60 9.23
12,00 6,24 6,40 6,808 7.3 7,80 8.09 .37  6.65 9,16
15,90 6.29 6,39 €78 7.65  7.88 .25 8.40  8.65 9.3l
13,00 6.23 6,41 6.55  7.33  7.90 8,17 841 8.43 9.9
.00 634 643 670 700 8.5 G0 853 B39 9,27
24,00 6,30 6.3 674 779 8,01 0,09 849 851 9,24
27,90 6,28 6,26 6,85  7.77 7,96 8,05 W41 8,60 9,01
W00 624 632 677 148 749 LAl L2 LS 9.l
3300 6,22 630 665 L9 .04 7,98 0.8 .36 .96
36,00 631 610 673 156 T8 606 843 064 8.9
39,00 6,39 617 674 7,66 7,00 .89 844 8,59 9.2
42,00 6,36 6,20 672 7,76 7,82 .97 8.34 857 0.98
15,90 €33 637 6,83 7,76 7,85 .06 8.4 8,63 9.0
40,00 6,25 634 673 7.84 7098 027 B30 0.64 6.03
51,00 6,25 €27 €79 7,77 8.0 8,34 8,44 8,77 9.08
easEseuEsaasesteeasEsaTsIN NS NTRENStaRSE A asadsRaRE R aNRE AR RS as

AVE.  6.27  6.29 6.7  7.73  7.09 0.11 R4l 8.60  9.10
VO B.68 .69 0.74  6.85  0.07  0.69 9.9 9.95 1.00
SIGMA 9,04  0.09 0.08 0.09 0.0 9,00 0.06 9.07 0.1
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TABLE 3

5 TEST SECTION % TURBULENCE INTENSITY DATA
e . (FROM REF. 9)

" - T g Hetane sbove tioer (inehes)
o TXYTT 2,00 3.00 4,00 8.9 12.90 16,89 19,00 25.00 30.40
. .00 11,87 12.22 13,73 3.89 3.9 3.8 3,09  3.19  1.99
i 9.00 11.3¢ 11.21 11.89 3.0 3.80 3.49 2.80 2.80 1.20

! 12,00 12,39 13,70 11.67 3,73 3.60 3,70 3.20 3.99 1.60

E@ 15,00 12.8) 12,79 10,03 4,09 3,70 3.60 3,10 3.30 1.80

. 18,00 12,28 13.41 11,34 4,06 4,20 4,20 3.30 400 3,00
. 21,00 11,00 13.83  8.90 $.20 3.80  3.80 3.60 2.9¢ 2.1l

i 20,00 11,27 12.70 12,78 6,07 4,00 3.80  3.58 3.0 1.80 |
. 27,00 11,21 }0.84 10,16 $.89  3.80 2,60 .80 3.0 2,49
i% 30,00 11,68 1272 1171 4.53 177 346 299 2,00 L.99 ]
o 33,00 11,77 11,83 11,47 .08 3,90  3.60 2,70  2.80 2,89 |
"N/ ‘ 36.00 1141 11,88 9,38 6.21 4.30 .60 3,20 3.0 2.7
- 39.00 12,26 11,33 9.58  5.85  4.52 3,90 .40 .68 2.0

ﬁ@ 42,00 12.74 12,09 12.75 4,70  3.80 3.67 3,30 3.40 3.80 |
# 45.00 12,09 12,11 10.96 4.89 3.90 3.50 3.60 3.20 2.5 |
0 48,00 12,47 12,76 12.48 4,79 3,60 3.60 2.9 2,70 2.40

P

eomievasieieassssiereReacessmsieNESEeLMRSERALAREESMLLRRSALRRRSS SRS

e AVE. 11.8% 12.32 11.33 479 3.92  3.66 3,24 3.8 2,19

%E SIGMA  0.56 0.90 1.37 8.76 9.22  0.19  0.3) 0,37 0.47

) R RSP

e Vo at 30 inches * 0.1 ft/wec

. * transverse position from far wall in inches
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simulate typical at-sea operations). It was desired that the entire oscillating mechanism
could be rotated, and so it was mounted on a column attached to the center of the

frame, with a locking handle to prevent any undesired rotation during the experimental
runs.

Y D. THESHIP MODEL

g In this preliminary phase of analysis. it was decided to use a generic destroyer
model with relatively simple geometric shapes to simulate the deck levels and the
superstructure, vice a more specific model type such as those listed in the introduction.
e [n this way it was hoped to gain some foresight in coupled-mode effects and general
S characteristics of trailing vortex generation, particularly directly above the after-end
-y area where most helicopter platforms are installed.

| The following desireable characteristics were considered in determining the model

;:;fj. composition:

i:;if (1) ense of construction (since it was originally envisioned to use numerous
K generic models, examining aftects of subtle changes of geometry)

x . (2)  durability (to withstand a variety of oscillation frequencies up to three Hertz)
o (3) lightweight (for minimal strain on the mechanism's motors and to reduce
eltects of dynamic loading). ' ' S

;.'f.EZ (4) low cost (always a driving factor)

i Also, it was desired to yield easily to modifications, such as the addition of vent holes p
f‘:ii&‘ ' for smoke:aerosol injection. Of the materials consideted, polyurethane foam of
3;'.;::; medium density (8 1bscubic fi) met all the characteristics listed, Surfaces sanded
;j§§:t1 relatively well with a sealant applied, and a flat black lacquer could then be directly
”“ spraved to the exterior. This low-reflective coating was desired for optimum contrast
o during photography, and was therefore also used inside the entire test section area of
:'. the wind tunnel.

l:E;iﬁ The platform consisted simply of a S-foot diameter plywood disk cut out of the
1 tunnel floor at the center of the test section. The model shape was then cut into the
S disk with approximately a half inch gap for model clearance in the rolling mode. A

minor obstacle in implementing this system occurred when attempting to prevent
ambient air from entering the test section through the gap between the model and the
cutout in the disk. Commercial types of bristle and closed-cell pof}'urethane
‘\ weatherstripping proved ineflicient due (o lack of compressibility. The commercial
AN foam with a self-adhesive strip also tended to peel off the cutout edges during extended
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periods of oscillation. The best results were obtained with a lower density (open-cell)
i polyurethane (the tvpe found in seat cushions) attached to 1-1.4-inch wide batting
¢ strips along the cutout edge. A good contact cement was used, and the batting
‘ provided a larger surface area for bonding than did the 3 Jd-inch unmodified disk. This
provided a sutlicient barrier to unwanted {low caused by the pressure ditlerential during
the wind tunnel operations. Finally, the disk was reinstalled and supported by circular
sections of steel plate mounted to the underside of the tunnel floor, making it easy to
rotate the model disk. oscillating mechanism system through any desired yaw angles.
The disk was also clamped at three positions from underneath to ensure it was
" maintained level with the remainder of the test section floor.

Both the motors were controliid by variable.-speed Minarik voltage control -
boxes, which were mounted on the outside of the tunnel wall but inside the observation
deck (see Fig. d.1). The desired rotational speeds were verified by a Monarch
_ Instruments TACH 1V electronic tachometer, which operates be directing a collimated
; light beam onto a reflective marker attached to either the yoke (for measuring the pitch
mode) or the outside of the cylindrical flange (for roll). The reflected pulses are
p compared against a 6-MHz internal crystal timebase, and the resultant speed
measurement is displayed directly in RPM on an LED readout. The instrument :
incorporates a microprocessor to compute the time 'interval between successive
reflected pulses, which were received be either directly pointing the instrument at the
reflective markers or by using a remote sensor. The last option was the most preferred

, since it was not required to leave the observation room to take the measurenients
B under the wind tunnel, and the controllers could then be adjusted with real-time
feedback.
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"
B V. EXPERIMENTAL METHODS
“’: A. TFLOW VISUALIZATION TECHNIQUES
‘Ir Numerous techniques are available to the aerodynamicist for the enhancement of
'*“ N qualitative flow study. As with all engineering situations, each has its own benefits and
‘drawbacks depending on the requirements of the problem. Flow visualization may be
\ approached from two major areas, that of on-body analysis and that of off-body, or
'!;f‘; the area surrounding the body in study. A common dilemma to both areas of on-body
‘*'. : : and off-body analysis is that it is imperative that a negligible disturbance to the
. | flowfield be introduced to ensure accurate results are obtained. As an example,
i:f; compare the flow visualization aspect to the data acquisition portion of'the project. A
23'; pitot-static prob¢ may be used nearly anywhere in the test section (except very cluse to
' '#Ef - the model and tunnel walls due to mutual interference) to determine the freestream 4
< - velocity, but any area downstream of the probe cannot be evaluated concurrently ]
:2;2& o unless the exact disturbance effects from the probe are known and can be corrested for ' "f
T;:;'.: in the data reduction. Likewise, any flow visualization techniques introduced to the
-g'.;t . flow, whether on-body or oﬂ‘ body, must not alter that whu.h it w attemptmg to -
y ) analyze. - _ - : oy
. 4::5 . 1. On-body Flow Techniques
i E;‘:' This is the area immediately surrounding the model, and all current techniques
;;gi utilize some sort of application. Techniques considered here included oil and clay
! smears and twfting. The smears would provide a long term record of the local
::7i streamlines, photography would be less critical and the flow around the entire model
'§:§ could be analyzed in detail, but at the low speeds used in this study the required
"::?, streaking would probably not occur. Previous work by LCDR Bolinger for the static
i mode! entailed the utilization of very thin [luorescent nylon filaments (0.7-thousanths
Ef:: of an inch in diameter). These tufts were attached in an evenly spaced in a grid along
SEIE the model, with application procedures detailed in (Ref. 9: pp. 32.33]. Due to their
v:fu:‘,’ small size and flexibility they had virtually no influence on the flowfield, and the
1 dynamics of the local streamlines were easily traced, as seen in Fig. 5.1. Due to delays
;:';: ) in model construction and implementation, this technique was uneble to be used with
:E:. the oscillating model,
X
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Figure 5.1 Example of Fluorescent Minitufts, Static Model

2, Off-body Flow Techniques
_ These methods typically employ the injection of light-scattering particles into
the flow, acting as tracers to the flow streamlines, The particles should be of a
sufficiently small size, at most around a hundred microns, so as to introduce no
disturbances to the flow but must still be able to disperse the light for visualization
purposes, Two methods were used.

An exception to the particle size was employed, consisting of neutrally-
bouyant helium bubbles ranging in sizes of one to three millimeters in diameter,
Mueller [Ref. 11] provides a detailed description of a similar bubble generating system
and lists several applications he encountered during his research in flow visualization
methods. This technique was attractive because bubbles could trace individual
streamlines of the flow, and also because the quick dispersion of the substance in
moderate turbulence was not experienced as it is in smoke techniques. Helium bubbles
were created using a Sage Action, Inc. (SAI) system, which consisted of a bubble
generator console, an ejector head, and a vortex generating chamber (see Fig. 5.2).
The console controlled the bubbles size, density and generation rate by a mixture of
soap-film solution and helium, with 50-psi air used to drive the bubbles through the
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helium, with 50-psi air used to drive the bubbles through the chamber. The bubbles
were created at the ejector nozzle and fed directly into the vortex generating chamber,
where the lighter bubbles impacted the outlet tube in the center of the chamber and the
heavier bubbles impacted along the walls of the chamber. This allowed the truly
neutrally-bouvant bubbles to pass through the vortex generator and be directed
through flexible tubing into the tunnel's test section approximately 18 inches upstream
of the model. A nozzle was used to direct bubble flow downstream, and since the pipe
supplying the nozzle replaced existing dowels in the tunnel it had no effect on the
turbulence intensity already calculated. The nozzle was supplied from the underside of
the tunnel, and could be placed at a variety of spanwise locations depending on the
model yaw angle and the desired area of flow analysis on the model. This system

produced excellent results for the static model aralysis and good results for the

oscillating model.,

Due to the relatively high Reynold's Number (about $0,000), another -

technigque was attempted in order to obtain more detailed analysis closer to the model,

particularly the superstructure areas, A small particulate substance was desired for the

finer detail, with the realization that this_type of material would be quickly dispérsed.
Smoke was to be avoided due to safety constraints and it was simply messy to work
with. A liquid aerosol system described by Griffin and Ramberg [Rell 12] was
investigated and found to be quite appropriate for the purpose'ot‘ this project. This
svstem produced a fine mist which was discharged from strategic areas of the model,
especially the areas of shed vortices determined from the static analysis, The system
described by Griflin was easily modified to existing units of the helium bubble
generator yystemy from SAI, thereby making it easy to implement, The compressed air
tube was disconnected from the generator console and routed to the inlet of the liquid
DOP (di(2-ethylhexyl)-phthalate} agitation chamber; the output was then connected,
again by flexible tubing, to a jet impactor nozzle inside the drum used as the vortex
generator for the bubble system. The jet impactor was used to reduce the particle size
and enable the smaller particles to follow the unaftfected flow. The output of the
chamber then went to a brass manifold with six outlets, from which tubing was run to
the various areas of the model described earlier. All connections between major
components of both systems were with flexible tubing except for the aeraosol exhaust
ports which consisted of brass piping through the model and connected to tubing on
the model's underside. The DOP was an ideal substance, since it is cnemically inert,
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non-toxic, non-corrosive, the system requires no chemical reaction or combustion, and
it contains no moving components for very little maintainance.

B. PHOTOGRAPHIC TECHNIQUES AND LIGHTING
Each flow visualization technique required somewhat different photographic
methods and therefore different lighting schemes were necessary for optimum results,
With only a few exceptions, the photographic equipment used was a single-lens reflex
Hasselblad 2000.FCW camera with one of two Hasselblad lenses: either a 110-mm. or
a |50.mm. The Hasselblad Is a professional-format camera, which was desired for
_ better resolution on enlargement printing. It became normal procedure to shoot with
3 3000+speed, type-107 black and white Polaroid film initially to ensure proper exposure,
: then the final photography was done using Kodak TMAX 400 professional film. To
account for the difference in film speeds, the TMAX was exposed by opening the
aperture one "f-stop” and overdeveloping (“pushing”) the film two stops, Other types
- and speeds of both color and black-and-white films were evaluated, but the best
contrast.was most consistently obtained with the Kodak TMAX. In all cases, proper
lighting was the primary obstacle, due in large part to the restrictive confines of the
observation:photographic deck and the limited size of the _plexigléss viewing ports in
the walls and ceiling. Also, any wind tunnel is faced with the problems of blockage
and interference, 5o discretion had to be maintained in the placement of any
illuminating devices inside the tunnel itself, particularly upstream of the test section,
. The reference used for all photographic techniques and procedures was Handbook for
Scientific Photography, by Alfred Blaker [Ref. 13]. The speciﬂc techniques employed

are now discussed in the following text.
1. Oscillating Model with Aerosol

It was much more difficult to obtain usable photographs when the aerosol
flow visualization technique was utilized. The lighting procedures first attempted are
similar to those discussed by Griflin [Refl 12: p. 68], in which the camera shutter was
held open in a blacked-out room and the exposure was determined by the back flash
set on the opposite side of the tunnel. The flash unit used was a Norman 2000,
capable of various power levels from <400 to 2000 W-secs., and the head was flashed
through a honeycomb screen for directionality. The full range of flash power settings
were also explored. In an attempt to bring out more contrast in the photographs, K-2
(vellow) and A (rad) flters were used for many of the shots, in accordance with Blaker
[Ref. 13: pp.69-79). Another effort entailed using Kodak Ectachrome color slide film
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flash techniques combined with fast shutter speeds were initially desired to “freeze” the
motion of the ship during oscillation, with a wide range of aperture settings and shutter
speeds examined.

2. Static/Oscillating Model with Helium Bubbles

This method produced the best photographic results of the three [low
visualization techniques used. Since the desired end result was to obtain bubble streaks
which followed the flow, extended shutter speeds were required. The lower end of the
scale (fastest shutter speed) was at 1,/4-seconds, with any faster speeds than that giving
short traces and little practicality of analysis. The upper end was at 2-seconds, since
slower speeds produced so many traces that the overlap was too great to be able to
[ollow any one particle. The best results were obtained with a shutter speed of
l-second for the static case and 1/2.second for the oscillating runs, with aperture
settings between F.4 and F-8/11 (depending on the lighting scheme),

The bubbles showed up best when being illuminated against a totally dark
background, so the lighting was set up to cast as little light ay possible onto the model,
This became quite challenging at times in view of the fact that the model was three
dimensional and of irrcgular shape. The source of lighting which produced the highest
trace intensities was an EIMAC model R-150-5 high-voltage arc lamp placed inside the :
tunnel and well downstream of the model. This was used to either direct a circular .
beam along .the port (leR) side of the ship, which in all cases was the |
viewing: photographic side, or around the entire model. The latter case worked better
for the static nose-down runs and some of the oscillation shots, Due to limitations
with lateral working space inside the tunnel, combined with the arc lamp being housed
in a three-foot long shroud, the runs at a 3S-degree yaw angle required the beam to be
bounced off of a mirror attached to the tunnel wall. Adjustment was time consuming,
but once in place the effect was substantially improved with the arc lamp.

The arc lamp, however, provided illumination in limited areas, and interesting
sections of the flow, such as between the stacks or bechind the superstructure, required
alternate lighting with good directional versatility. It was found that slide projectors
served this purpose quite well. Two types were used, a Kodal Ectagraphic Model AF-2
and a 500-W Sawyers “Rotodisc” projector, with three to six being used at any one
time depending on the areas of interest surrounding the model. Normally, two or three
were used on the opposite side of the tunnel to illuminate the areas of the bow and
stacks, with the remainder positioned at various angles inside the tunnel aft of the test
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e section. An 800-Watt professional theatre lamp was occasionally used, but was bulky
.;j:f:: and was difficult to accurately direct around the model inside the confines of the wind
R .
;j‘;;: tunnel. The projectors could provide a large area of lighting, say over the top of the
model or along the starboard side, otherwise they were used with slides to create highly
_';-:f_' detailed beams te completely silhouette the ship. These slides were manufactured from
. strips of aluminum tape with the shape of the lighted area being cut out, and since
) construction was relatively easy numerous were made and could be changed at
convenience (for example, after a change of vaw angle). This method provided
,'.3':_ excellent results for the static cases, but the set-up time was normally quite long and
laborious. ' ,
i The oscillating runs presented more of a dilemma: the lighting could be
' optimized for only one position, but the model motion caused some areas to be unlit at
,;Z;: one part of the cycle and producing excessive model glare at other parts. A
-,;‘;‘;.j‘ compronuse was made to reduce some of the illumination areas very close to the model
‘,;7.:? and accept some occurrences of glare. It is noted here that subsmntiul_blgr due to the
ship movement was anticipated but would be accepted since the actual subject matter
5\:",;"‘ was the bubble traces themselves. Moreover, it was hoped to determine the ship
;'.';'i:v position from the blur through various stages of its cycle. '
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R VL. RESULTS
' " The flow visualization methods v hich were utilized in this study have been
described in detail, along with their associated photographic and lighting techniques,
:f“f The following results are first discussed according to the flow visualization method (as
_ in Chapter V), with the helium bubble section subdivided by yaw angles. [t is noted,
.;-;} and will become obvious as the figures are scanned, that it was the bubble technique
,‘i' from which the conclusions were derived.
g The tunnel freestream velocity was held constant at 9.1 feet per second for all of
' the test runs, From the data of Table 2, the freestream velocity can be computed for
\, various heights of interest. For example, the velocity over the bow (at 2=2 inches)
7;:" was approximately 6.25 ft'sec,, or at the top of the stacks (at 2= 4.5 inches) it was
';:" approximately 6.9 ft. sec. _
The pictures presented here are representative of a much larger grouping from
35‘ which the observations and conclusions were made, These are published solely as an
:‘;%1 example of the results obtained and to help illustrate the validity of the conclusions
j{ being drawn. It is also noted that much of the resolution from the original R
~_ photographs was lost during the printing process, ' |
. A AEROSOL INJECTION )
,Jf The results for this technique can only be described as disappointing. In
e attempting to use a high.powered flash from across the tunnel, the results were
o inconsistent and were very sensitive to the angle of the flash head with the honeycomb
\:’.i attachment, Without the use of the honeycomb the pictures were extremely
'\:'«. overexposed, even at the lowest power settings for the flash and the highest aperture
;’ settings on the camera. It is suspected that the flash head was quite prone to the
5 vibration of the tunnel, causing it to become quickly misaligned.

" The system plumbing is also suspected to be a contributor to the frustration
caused be this method! Eighth-inch tubing was used to transport the aeroso! through
the ports, this may have been too restrictive to obtain a high-density flow. Thicker

.‘.: aerosol clouds were easily obtained by increasing the air pressure into the DOP
'E: agitation chamber, but this action produced relatively high velocity aerosol jets from
;:: the exit ports and thus made this trick invalid. Also, the regulator valve for the
r
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Ty compressed air inlst was very sensitive to adjustment and a consistent but yet realistic

" aerosol flow was difficult to obtain, .
I:‘e

i

o

i

5 o

;;ff . ‘ Figure 6.1 Sample Results with Aerosol, *

l:’[ ) The photo included here (Figure 6.1) was taken by the third technique described
,;;Z in the photographic procedures section, using Ektachrome color film for higher
:’ contrast. The difficulty generated from this technique may have been primarily from
' the glare received from the flash bouncing off of the plexiglass viewing port.

':;: The aerosol injection technique continues to be modified as of the writing of this
"‘: report, including possibilities of installation of larger diameter tubing and shooting the
B photogruphs from inside the tunnel to avoid any glare problems.

s B. HELIUM BUBBLE STREAKS

s ‘This method of flow visualization became the preferrsd analysis technique, since
once the lighting problems discussed in Chapter V were overcome the procedure was
i straightforward and the results were consistent. At each yaw angle the model was
. photographed at the following positions: '
:5: (1) Zero degrees for roll and pitch (true static condition)

. (2)  Full left roll, zero pitch,

"-'s‘ (3)  Full right roll, zero pitch.
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(3) Full right roll, zero pitch.
(4)  Zero roll, full nose down pitch.
(5) Zero roll, full nose up pitch.
(6) Oscillating model in both roll and pitch.
The above positions are defined as follows: full rol! (left or right) is approximately 8
degrees, and full nose (up or down) is approximately 4 degrees. All figure titles are in |
reference to the above, in that “nose up” is assumed full nose up at 4 degrees and “left .
roll” refers to full left roll at 8 degrees, The photos of the oscillating model show that
the ship is blurred, but the helium bubble streaks were generally quite clear. Numerous
photos show distinct shaded columns above the two stacks, These are from the
projector lighting at the opposite side of the test section, and were highly pronounced
only on days when smoke visualization techniques were being used concurrently in
other nearby facilities. Lastly, little difference could be seen consistently enough in the
two different roll positions to draw any definite conclusions, thus only one roll position
for each series of yaw angles is included in the following results sections.

Figure 6.2 Zero Degrees for Roll and Pitch at Zero Degrees Yaw.
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Figute 6.4 Nose Up Pitch at Zero Degrees Yaw.
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Figure 6.5 Nose Down Pitch at Zero Degrees Yaw,

1. Zero Degrees Yaw

.The flow generally appears to be quite symmetrical along either side of the .
model, despite the existence of the turbulent boundary layer. Evidence of the
recirculation zones, although negligible in Fig. 6.2, is seen behind the aft stack in Fig
6.3, For the nose up case, not evident in Fig. 6.4, the flow has a very distinct
detachment over the bow but quickly reattaches and has little affect on the
supesstructure and forward stack., As would be expected, the opposite is true for the
nose down case (Fig. 6.5), with stronger trailing vortices being generated off the leading
edge of the superstructure and forward stack. The oscillating shot (Fig. 6.6) has
substantially fewer bubble traces due to the shorter exposure times, but displays some
interesting features. A “wave affect” is seen on several traces along the port side,
presumably due to the motion of the stacks, and the forward stack oscillation is shown
by the series of inward and outward direction changes of several bubble traces.
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Figure 6.6 ngilla;ing quel at Z:S:Q»Dégreqo:de. )
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Figure 6.7 Zero Roll and Pitch at 20-Degrees Right Yaw.
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2. Twenty Degrees Right Yaw

A foot vortex has gencrated just aft of the bow and travels along the lower
port side leading-edge of the superstructure, with numerous weaker vortices trailing
from various areas of the ship. The initial trailing vortex angles are the same as the
model’s yaw, but as they ccntinue travelling downstream they realign themselves with
the freestream and join together to form a single large vortex. Figure 6.7 shows the
shift of the stagnant regions around the front stack. The left roll position (Figs. 6.8)
shows a stronger trailing vortex at the aft end of the forward stack, again in
comparison to the zero-degree yaw position, as well as the generation of a trailing
vortex off of the edge of the superstructure. The pitch positions (Figs. 6.9 and 6.10,
respectively) display effects similar to those seen at the zero-degree yaw position. The
oscillating shot (Fig. 6.11) was chosen to show the effecy on the recircrlation zones:
bubbles were still captured here and actually maintained oscillations with the modul for
a short time before escaping back to the freestream.

Figure 6.8 Lefl Roll at 20-Degrees Right Yaw.
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Figure 6.10 Nose Down Pitch at 20-Degrees Right Yaw.
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ﬁ;.‘_i' Figure 6.11 Roll and Pitch Oscillations at 20-Degrees Right Yaw,

ey . o _ : o

,3;,: ': 3. Twenty Degrees Left Yaw

B This position shows primarily a- mirror image of the twenty-right yaw position
. (Figs. 6.12 to 6. 16). More obvxous from this-aspect, however, is the development of
:E' the large corkscrew vortex on the leeward side, Of particular interest are the trapped
:lf:‘ bubbles in Fig. 6.12 directly behind the first stack, and the large crea of detaching flow
A.:?,:} off the bow in Fig. 6.14, The bubble traces appear more irregular in Fig. 6.16,
@f_ particularly along the port side, which may be attributable to the ship’s oscillations.

i:"‘: 4. Thirty-five Degrees Left Yaw

",;:Et Trailing vortices are evident on most of the sharp edges of the model at this
'°‘$ higher yaw angle (Figs. 6.17 to 6.21). The corkscrew vortex has grown even more in
size, and the flow generally appears more turbulent throughout the entire flow field.
The position at right roll (Fig. 6.18) shows the detaching of trailing vortices over the

entire section before the superstructure. This effect 'is weakened in the nose down
position, but much more prevalent with the bow up than has been seen at the previous
yaw angles. The model in the oscillating mode (Fig. 6.21) displays more irregularities
0 in the bubble traces than do the static modes, presumably due to the interaction with
the ship’s motion.
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Figure 6.15 Nose Down Pitch at 20-Degrees Left Yaw.

, "‘-""—"‘;":h"‘— '

PRI YW




Figure 6.17 Zero Pitch and Roll at 35-Degrees Left Yaw.
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Figure 6.19 Nose Down Pitch at 35-Degrees Left Yaw.
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Figure 6.21 Oscillating Model at 35-Degrees Left Yaw.
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VII. CONCLUSIONS AND RECOMMENDATIONS

\ This report dealt with the investigation of visualizing the flow field about an
¢ oscillating ship model. As a result of this and an earlier study (Ref. 9), the following
" basic conclusions can be drawn;

(1) The ship motion simulation was a viable first-step approximation to actual
ship motion,

(2) The helium bubble flow visualization technique was quite successful for both
t the static and oscillating cases,

(3) The flow fleld about both the static model and, to a lesser degree, the
oscillating model, was efTectly anaiyzed,

: (d)  Little determination of coupling effects ftom the three oscillating modes
previously listed was realized. This area requires further flow visualization
__study combined with accurate data acquisition techniqucl

The following recommendations are given for consideraton By those who will
N ' continue with the next phases of this project (as discussed il the Introduction):

r (1)  The use of high-resolution video is strongly recommencled for a more exact
g study of the oscillating mode. In addition to enabling a detailed analysis of
. the flow fleld over a wider range of oscillation frequencies, it would provide

virtually real-time feedback and bypass the delays involved in developement
. and printing of photographs.

(2) The fluorescent minituft technique would provide valuable information in the
3 oscillating mode, such as the determination of whether vortex shedding from
¥ the model body exists. Future models should incorporate tulling as described
in Ref 9.

{3)  Modification to the bubble generator system to possibly increase the bubble
d output rate would provide the option to photograph at faster shutter speeds.
e This would make the frequency analysis based on the bubble streaks less
‘ complicated,

(4)  The author is convinced that the aerosol technique shows enough promise for
. further modification. One possible avenue, as pointed out in the results
section, would be to investigate the effects of increasing the tubing diameter
and use higher air pressures to provide a more dense aerosol,

. (5) The EIMAC high-voltage arc lamp was responsible for the majority of the
. high contrast bubble traces. More illumination sources of this type, with an
¢ added feature of a geometrically adjustable iris to conform to the model shape,
N are needed,
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Since lighting was one of the biggest obstacles, alternate illumination schemes
should be considered. These might include the use of laser sheets, or LED's
or optical fibers from within the ship (this would require no adjustment in the
static or oscillating case).

The camera shutter should be synchronized to the ship oscillations, which
could easily be incorporated with existing hardware. Thus, if recommendation
(1.) is unfeasible at this time (due to funding constraints), this would be an
alternate method of obtaining a more accurate frequency analysis.

A switch for a second remote to the electronic tachometer would be helpful to
facilitate measurement of both modes of motion.

Soine analysis of the rolling modes may be obscured due to the motion being
in the same plane as the camera angle. Shooting from the ceilinig viewing port
or even from inside the tunnel may provide some added insight. The latter
case would also eliminate problems with reﬂectwe glare from the plexiglass.

Flow visualization is only a first step in accurate flow analysis, action is
required now to introduce data acquisition methods to achieve more detailed
results in the model's areas of interest,

Further study is required into incorporating a more realistic ship motion -
program into the NPS low-speed wind tunnel,
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